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Abstract
We discuss the completeness of (generalized) eigenfunctions in quantum
mechanics using the classical theory developed by Weyl, Titchmarsh, and
Kodaira. As applications, we rigorously prove the completeness of generalized
eigenfunctions for the step and well potentials.
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1. Introduction

Since its formulation at the beginning of the 20th century, the interpretation of quantum
mechanics represented a great challenge, as the very abstract formalism of this theory seemed
to contradict well-established intuition and common sense. As is well known, the standard
interpretation of quantum mechanics, formulated by Niels Bohr and Werner Heisenberg in 1927
[13], solved these apparent contradictions: it put quantum mechanics in a logical consistent
footing and it gave a full scheme explaining the results of every experimental situation.

In this interpretation (the so-called Copenhagen Interpretation of Quantum Mechanics) the
completeness of eigenfunctions for a given (self-adjoint) operator—representing for example
the energy—plays a prominent role, since it allows for a faithful correspondence between the
properties of a given physical system and its mathematical description (see for instance Dirac
[9, p 36]). Now, ‘completeness’ in standard Hilbert space theory is a very precise notion. It
asserts that the set of eigenfunctions for a self-adjoint operator on a Hilbert space H forms a
complete set: every element of H can be expanded as a series in terms of that. As observed
by Dirac [9], this is not enough for quantum mechanics. In fact, it is explicitly stated in his
classical treatise (Dirac, [9, pp 37–40]) that the ‘eigenkets’ needed to express completeness in
quantum mechanics are not always elements of a fixed Hilbert space.
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Thus, two obvious questions arise: can we rigorously construct a reasonable space of bra
and ket vectors? Can we prove completeness of energy eigenstates in physically interesting
cases? The first problem has been treated by several researchers. We specially mention the
work of Antoine [1] and Roberts [17] on the use of rigged Hilbert spaces (or ‘Gelfand triplets’)
in quantum mechanics, and the more general theory of partial inner product spaces introduced
by Antoine and Grossmann [2, 4]. An interesting discussion on ‘quantum mechanics beyond
Hilbert space’ has been given by Antoine in [3], and rigged Hilbert spaces have also appeared
recently in several papers by de la Madrid, Gadella, Gomez and Bohm [7, 8, 10].

On the other hand, it seems to us that the second problem has been treated less
thoroughgoingly in the physics literature, in spite of its obvious importance. We mention
that an explicit proof of completeness (under some mild integrability assumptions on the
potentials) has been given by Newton in the classical paper [16], and also that some proofs—of
varied levels of rigor—of the completeness of the hydrogen atom appear in [12, 14, 15]. Now,
completeness, as understood by Dirac [9], can be thought of as a generalization of the standard
theory of Fourier expansions, and such a generalization has been developed in the context of
Sturm–Liouville problems by several mathematicians since the beginning of the 20th century
(see Weyl [21], Kodaira [12] and Titchmarsh [20], and also Stone [18]). In this paper we
stress on the fact that this Weyl–Titchmarsh–Kodaira theory basically solves the completeness
problem, a point of view previously considered by Newton in [16]. Specifically, we use
[12, 20, 21] to present rigorous proofs of the completeness of the ‘generalized eigenstates’
associated with a Hamiltonian of a free particle moving under the influence of the step and
well potentials in one-dimensional quantum mechanics. We consider these cases to be of
interest, because they illustrate how formal proofs proceed in the case of continuous spectrum
and also when bound states are present.

The remainder of this paper is organized in two sections. Section 2 is a review of the
Weyl–Titchmarsh–Kodaira theorem [5, 6, 12, 19–21]. We have included a rather detailed
discussion of this result since it is not usually cited in the literature. Our examples of the step
and well potentials are developed in section 3.

2. The Weyl–Titchmarsh–Kodaira completeness theorem

In this section we summarize some aspects of the Weyl–Kodaira–Titchmarsh theory, using
as our main sources Kodaira’s classical paper [12] on the completeness of eigenfunction
expansions for the Schrödinger operator, the standard treatises [5, 6] and the recent textbook
[19].

We begin with the Sturm–Liouville operator

L = − d

dx

(
p(x)

d

dx

)
+ q(x), (1)

in which we assume that the variable x belongs to an interval (a, b) with −∞ � a < b � +∞,
and that p(x) and q(x) are real-valued functions on (a, b) satisfying the following conditions:

(a) p(x) > 0 for all x ∈ (a, b);
(b) p(x) and p′(x) are continuous;
(c) q(x) ∈ L1

loc(a, b), that is, q(x) is integrable over finite subintervals of (a, b).

The Weyl–Titchmarsh–Kodaira theorem can be proven under less restrictive conditions
on the function p(x), see [5, p 224] and [19], but we will not require this higher level of
generality.
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Definition 1. Let l0 be an arbitrary complex number, and c some real number between a and
b. If every solution u(x) of L(u) = l0 u is in L2(a, c] (respectively, in L2[c, b)) we say that
the operator L is of limit circle type at a (respectively, of limit circle type at b). Otherwise, we
say that L is of limit point type at a (respectively, of limit point type at b).

This definition depends only on the operator L and not on the complex number l0. Indeed, a
theorem due to Weyl (see [12, p 922], [5, p 225] and [19, chapter 9]) states that if every solution
u(x) of L(u) = l0 u is in L2(a, c] for some complex number l0 (respectively, in L2[c, b)), then
for arbitrary l ∈ C, every solution u(x) of L(u) = lu is in L2(a, c] (respectively, in L2[c, b)).

We denote by ACloc(a, b) the space of all functions u : (a, b) → R such that u can be
written as the integral of a locally integrable function, so that, in particular, if u ∈ ACloc(a, b)

then its derivative u′ exists almost everywhere [19]. We consider L as a linear operator on
L2(a, b) by specifying its domain as follows:

D(L) = {u ∈ L2(a, b) : u, u′ ∈ ACloc(a, b) and Lu ∈ L2(R)}. (2)

The operator L with domain D(L) (we abbreviate this phrase by writing simply (L,D(L))

in what follows) is symmetric and closed. Moreover, L is of limit point type at a and at b, if
and only if it is self-adjoint (see [12, p 923]). Thus, in view of the applications we have in
mind, we hereafter consider only the limit point case.

Definition 2. A system of fundamental solutions to L(u) = lu, l ∈ C, is a pair of solutions
s1(x, l), s2(x, l) such that

(1) [s1, s2] = p(x)(s1(x, l)s ′
2(x, l) − s2(x, l)s ′

1(x, l)) = 1, in which s ′
k(x, l) denotes the

derivative with respect to x:
(2) sk(x, l̄) = sk(x, l), k = 1, 2;
(3) sk(x, l) and s ′

k(x, l) are analytic (as functions of l) on the whole complex plane.

Since we are considering exclusively the limit point case, the functions s1 and s2 cannot
be both elements of L2((a, b)). We also point out that such a system of solutions is certainly
not unique. A particular choice of a system of fundamental solutions is obtained, for example,
by solving L(u) = lu, l ∈ C, with boundary conditions

s1(c) = s ′
2(c) = 0, s2(c) = s ′

1(c) = 1,

for an arbitrary point c ∈ (a, b). That this boundary value problem possesses a unique solution
is stated for example in [19, chapter 9]. Moreover, we have the following easy proposition.

Proposition 1. If u(x) solves the Schrödinger equation

− d2

dx2
u + q(x)u = lu, l ∈ C, (3)

in which q ∈ L1
loc(a, b), then u and u′ are continuous.

Thus, if the function q(x) in (1) is discontinuous (as in the well and step potential
examples) and we wish to find s1, s2 explicitly, this proposition tells us that s1, s2 must satisfy
some matching conditions at the discontinuity points of q(x) in addition to the properties
appearing in definition 2.

The fundamental solutions s1, s2 are generalized eigenfunctions in the sense of Gelfand
and Vilenkin [11]. That is, they can be considered as ‘weak eigenfunctions of the eigenvalue
problem L(u) = lu, l ∈ C: for any φ ∈ D(L), the identity

〈si, Lφ〉 = 〈si, lφ〉, i = 1, 2,

3
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holds, in which 〈 〉 indicates L2 pairing. Theorem 2 (equation (12) below) tells us precisely
what it means for these generalized eigenfunctions to be a complete set.

Now we consider the self-adjoint operator (L,D(L)) and define the characteristic
functions

fb(l) = − lim
x→b

s2(x, l)

s1(x, l)
, (4)

fa(l) = − lim
x→a

s2(x, l)

s1(x, l)
. (5)

An important observation due to Weyl (see [12, p 925]) is the fact that the characteristic
functions are uniquely determined by the conditions∫ b

c

|s2(x, l) + fb(l)s1(x, l)|2 dx < +∞
and ∫ d

a

|s2(x, l) + fa(l)s1(x, l)|2 dx < +∞,

in which c, d ∈ (a, b). We also have the conjugation properties fa(l̄) = fa(l) and
fb(l̄) = fb(l), and we also note that fa(l) �= fb(l) for Im(l) �= 0 since L is self-adjoint.
We quote from [5, p 229]

Theorem 1. The characteristic functions fa(l) and fb(l) are analytic on Im(l) �= 0, and if
they have poles on the real axis, the poles are simple.

With these preliminaries, we can state the Weyl–Titchmarsh–Kodaira theorem as discussed
in Kodaira’s classic paper [12, p 925] (see also [5, 19]). Let us define the characteristic matrix
M(l) = (Mjk(l)) as

M11(l) = fa(l)fb(l)

fa(l) − fb(l)
, (6)

M12(l) = M21(l) = 1

2

fa(l) + fb(l)

fa(l) − fb(l)
, (7)

M22(l) = 1

fa(l) − fb(l)
. (8)

This matrix allows us to define a matrix measure (ρi,j (λ)) which, in turn, determines a
‘generalized Fourier transform’, as the following theorem shows.

Theorem 2. Let (L,D(L)) be the self-adjoint operator introduced above; assume that L has
the spectral representation

L =
∫ +∞

−∞
λ dE(λ), (9)

and let us consider the characteristic matrix M(l) = (Mjk(l)) defined in (6)–(8).

(1) Then, for every λ ∈ R, there exists the limit

ρjk(λ) = lim
δ→0+

lim
ε→0+

1

π

∫ λ+δ

δ

Im(Mjk(t + iε)) dt, j, k = 1, 2. (10)
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(2) The matrix P(λ) = (ρij (λ)) is continuous on the right and it satisfies the following
monotonicity property: for μ < λ, the matrix P(λ) − P(μ) is positive semi-definite.

(3) Set E(�) = E(λ)−E(μ) for any finite interval � = (μ, λ]. Then, for any u ∈ L2(a, b),
the spectral projection E(�)u(x) can be represented as

E(�)u(x) =
∫ b

a

u(y) dy

∫
�

2∑
j,k=1

sj (x, λ)sk(y, λ) dρjk(λ). (11)

This integral converges absolutely, and moreover,∫ b

a

dy

∣∣∣∣∣∣
∫

�

2∑
j,k=1

sj (x, λ)sk(y, λ) dρjk(λ)

∣∣∣∣∣∣
2

< ∞.

(4) For any u ∈ L2(a, b) we have the representation

u(x) =
∫ b

a

u(y) dy

∫ +∞

−∞

2∑
j,k=1

sj (x, λ)sk(y, λ) dρjk(λ), (12)

in which the limits are taken in the sense of L2(a, b).

Equation (12) allows us to obtain a generalized Fourier transform u 	→ F(u) from
L2(a, b) onto a Hilbert space H which we now define. Consider the space of vector-valued
measurable functions φ(λ) = (φ1(λ), φ2(λ)) such that φj ∈ L2(R), for j ∈ {1, 2}, and set

‖φ‖2
H =

∫ +∞

−∞

2∑
j,k=1

φj (λ)φk(λ) dρjk(λ).

Item (ii) in theorem 2 implies that ‖φ‖2
H � 0, and we can define the Hilbert space H as

H = {φ = (φ1, φ2) : ‖φ‖H < ∞}.
This is the space which allows us to define a generalized Fourier transform. Indeed, if we set

ũk(λ) =
∫ b

a

sk(y, λ)u(y) dy, k ∈ {1, 2},

then the vector-valued function (F(u))(λ) = (̃u1(λ), ũ2(λ)) is well defined as an element of
H. We can then re-write equation (12) as

u(x) =
∫ +∞

−∞

2∑
j,k=1

sj (x, λ)̃uk(λ) dρjk(λ), (13)

in which the convergence is assumed to be in the L2 sense. Then, the following theorem holds
[12, p 928].

Theorem 3. The transformation F is a unitary transformation from L2(a, b) onto H, and its
inverse is given by

F−1(φ1, φ2)(x) =
∫ +∞

−∞

2∑
j,k=1

sj (x, λ)φk(λ) dρjk(λ).

Remark 4. It is not always easy to compute either the entries of the characteristic matrix M
or the spectral measure ρij . One way to do this is by using Green’s functions; see for instance

5
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[7]. On the one hand [6, theorem XIII.5.18], there exist analytic functions θ±
ij such that the

Green’s function of the eigenvalue problem (3) is given by

G(x, x ′, l) =
⎧⎨⎩

∑
i,j=1,2 θ−

ij (l)Si(x, l)Sj (x ′, l) x < x ′∑
i,j=1,2 θ+

ij (l)Si(x, l)Sj (x ′, l) x > x ′,
(14)

in which S1, S2 are fundamental solutions as in definition 2, but we do not insist that they
satisfy the normalization condition [S1, S2] = 1. In this case we have

ρjk((a, b)) = lim
δ→0

lim
ε→0+

1

2π i

∫ b−δ

a+δ

[θ−
jk(s − i ε) − θ−

jk(s + i ε)] ds (15)

= lim
δ→0

lim
ε→0+

1

2π i

∫ b−δ

a+δ

[
θ+
jk(s − i ε) − θ+

jk(s + iε)
]

ds. (16)

On the other hand, it is well known [7, 12, 19] that

G(x, x ′; l) = (2m/h̄2)

W(S1, S2)

{
S2(x, l)S1(x

′, l) x < x ′

S2(x
′, l)S1(x, l) x > x ′,

(17)

so that by uniqueness, we can compute ρij ((a, b)) straightforwardly comparing (14) and (17).

3. Applications: completeness of the energy

3.1. The step potential

Let a, V0 > 0 and consider the Hamiltonian

H = − h̄2

2m

d2

dx2
+ V (x), (18)

defined on L2(R), where V (x) = V0 for −a � x � a and V (x) = 0 elsewhere. Here we
assume that D(H) is the maximal domain of self-adjointness, that is,

D(H) = {f, f ′ ∈ ACloc(R) : Hf ∈ L2(R)}
as in (2). We consider the eigenvalue problem

Hϕ(x, k) = lϕ(x, k), (19)

where k2 = 2m

h̄2 l. We set η(k) := ( 2mV0

h̄2 − k2
)1/2

, and we define

θ(k) := ka + tan−1

(
k

η(k)
tanh(η(k)a)

)
and φ(k) := ka − tan−1

(
η(k)

k
tanh(η(k)a)

)
.

Then a set of fundamental solutions for the eigenvalue equation (19) is given by

s1(x, k) =

⎧⎪⎨⎪⎩
A(k) sin(kx − θ(k)) x < −a

B(k) sinh(η(k)x) |x| � a

A(k) sin(kx + θ(k)) x > a,

in which the matching conditions imposed by proposition 1 led us to define
A(k) = 1

η(k)

(
sinh2(ka) +

(
η(k)

k

)2
cosh2(ka)

)1/2
and B(k) = 1/η(k), and

s2(x, k) =

⎧⎪⎨⎪⎩
C(k) cos(kx − φ(k)) x < −a

D(k) cosh(η(k)x) |x| � a

C(k) cos(kx + φ(k)) x > a,

6
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where, again because of proposition 1,

C(k) =
(

cosh2(η(k)a) +

(
η(k)

k

)2

sinh2(η(k)a)

)1/2

and D(k) = 1.

We now apply the Weyl–Titchmarsh–Kodaira theory. Recalling (4), (5), we have that the
characteristic functions are defined as

f∞(k) = − lim
x→∞

s2(x, k)

s1(x, k)
and f−∞(k) = − lim

x→−∞
s2(x, k)

s1(x, k)
. (20)

In our case we have

f∞(k) =
{

iC(k)

A(k)
ei(φ(k)−θ(k)), Im(k) > 0

−iC(k)

A(k)
e−i(φ(k)−θ(k)), Im(k) < 0

(21)

and

f−∞(k) =
{−iC(k)

A(k)
ei(φ(k)−θ(k)), Im(k) > 0

iC(k)

A(k)
e−i(φ(k)−θ(k)), Im(k) < 0.

(22)

We note that f∞(k) = −f−∞(k) for k �= 0.
Next, we compute the characteristic matrix M(k) = Mij (k) following (6)–(8). We find

that

M11(k) = f∞(k)f−∞(k)

f−∞(k) − f∞(k)
= i

2

C(k)

A(k)
ei(φ(k)−θ(k)) (23)

M12(k) = M21(k) = 1

2

f−∞(k) + f∞(k)

f−∞(k) − f∞(k)
= 0 (24)

M22(k) = 1

f−∞(k) − f∞(k)
= i

2

A(k)

C(k)
e−i(φ(k)−θ(k)), (25)

and we can state two ‘Fourier transform’-type results as corollaries of the general theorems of
the previous section.

Theorem 5. Let H be the second-order differential operator on L2(R) defined by (18) with
the matrix measure (ρij (λ)), λ ∈ R. Set for u ∈ L2(R),

ũj (λ) =
∫ ∞

−∞
sj (y, λ)u(y) dy, j ∈ {1, 2}.

Then λ 	→ ũ1(λ) is an odd function and λ 	→ ũ2(λ) is an even function. Furthermore, the map
Fu = (̃u1, ũ2) is a unitary operator from L2(R) onto L2([0,∞), dρ1,1) ⊕ L2([0,∞), dρ2,2).

Proof. In order to compute the density functions ρij (λ), we apply (10) to the characteristic
matrix Mij (k) that we found above; we shall always assume that Im(k) > 0. First we see that

C(k)

A(k)
= (η2 + k2) cosh2(ηa) − k2

(η2 + k2) sinh2(ηa) + k2
= (2mV0/h̄

2) cosh2(ηa) − k2

(2mV0/h̄
2) sinh2(ηa) + k2

.

Then we note that C(k)/A(k) and A(k)/C(k) are continuous with finite limit when k → 0.

Therefore, for s ∈ [0, t] the sequence of functions

M1,1(s + iε) = i
C(s + iε)

2A(s + iε)
ei(φ(s+iε)−θ(s+iε)

7



J. Phys. A: Math. Theor. 43 (2010) 255301 G Palma et al

are continuous and uniformly bounded on ε. Moreover, from the fact that the pointwise limit

lim
ε→0+

M1,1(s + iε) = i
C(s)

2A(s)
ei(φ(s)−θ(s), it follows that

m1(s) := lim
ε→0+

Im(M1,1(s + iε)) = C(s)

2A(s)
Im(i ei(φ(s)−θ(s)).

Thus,

m1(s) = C(s)

2A(s)
cos(φ(s) − θ(s)),

since C(k)/A(k) is real when k = s ∈ R. But then,

ρ11(t) = 1

π

∫ t

0
Im(M11(s)) ds = 1

π

∫ t

0
m1(s) ds

and

dρ11(t) = 1

2π

(
C(t)

A(t)
cos(φ(t) − θ(t))

)
dt = 1

π
m1(t) dt.

On the other hand,

m2(t) := Im(M22(t)) = 1

2π

A(t)

C(t)
cos(φ(t) − θ(t)),

and so by the same reasoning as above we obtain that

dρ22(t) = 1

2π

(
A(t)

C(t)
cos(φ(t) − θ(t))

)
dt = 1

π
m2(t) dt.

Next we remark that the function λ 	→ s1(y, λ) is an odd function and λ 	→ s2(y, λ) an even
function, and consequently ũ1(λ) and ũ2(λ) are odd and even functions respectively since
they are defined in terms of the fundamental solutions s1(y, λ), s2(y, λ) for the eigenvalue
equation (19). Thus, both functions ũ1(λ) and ũ2(λ) can be assumed to be defined only on the
half line [0,∞). Then by theorem 3 the generalized Fourier transform Fu = (̃u1, ũ2) maps
L2(R) onto L2([0,∞), dρ1,1) ⊕ L2([0,∞), dρ2,2) as a unitary operator. �

Theorem 6. Let (ρi,j (λ)) be the matrix measure associated with the self-adjoint operator H.

Then for every u ∈ L2(R) the asymptotic expansion holds:

u(x) = 2

π

(∫ ∞

0
s1(x, t )̃u1(t)m1(t) dt +

∫ ∞

0
s2(x, t )̃u2(t)m2(t) dt

)
. (26)

Furthermore, ∫ ∞

−∞
|u(s)|2ds = 2

π

∫ ∞

0
(|̃u1(t)|2m1(t) + |̃u2(t)|2m2(t)) dt. (27)

Proof. From the inversion formula (13) in addition to the fact that mi(−t) = mi(t) and
dρi,i(−t) = −mi(t) dt for t ∈ R, this shows the first identity. Now the second statement
follows from the preceding theorem. �

8
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3.2. The well potential

We now study the completeness of the (generalized) eigenstates of the Hamiltonian of quantum
mechanics for a particle moving in a one-dimensional well potential.

Let a, V0 > 0 and consider the Hamiltonian

H = − h̄2

2m

d2

dx2
+ V (x), (28)

where V (x) = −V0 for −a � x � a and V (x) = 0 elsewhere. Here we assume that D(H) is
the maximal domain of self-adjointness, that is,

D(H) = {f, f ′ ∈ ACloc(R) : Hf ∈ L2(R)},
as in (2). We consider the eigenvalue problem

Hϕ(x, k) = lϕ(x, k), (29)

and we define k = (2ml)1/2/h̄ and q = (2m(l + V0))
1/2/h̄.

Theorem 7. A set of fundamental solutions of the eigenvalue equation (29) is given by

Sl(x, E) =
⎧⎨⎩

I eikx + R(k) e−ikx x � −a

A(q) eiqx + B(q) e−iqx |x| � a

T (k) eikx x � a

(30)

and

Sr(x,E) =
⎧⎨⎩

T (k) e−ikx x � −a

A(q) e−iqx + B(q) eiqx |x| � a

R(k) e−ikx + e−ikx x � a,

(31)

where the coefficients I, A(q), B(q), R(k), T (k) are to be found by using matching conditions
at x = ±a guaranteeing that the Schrödinger equation is fulfilled in the whole real axis.
The subscripts r and l stand for the square integrability of the wavefunction Sl,r at x = ±∞
respectively.

The proof of theorem 7 is straightforward, except by the matching condition part. In order
to obtain explicit expressions for the fundamental solutions Sl and Sr on the whole complex
plane l ∈ C, we have to define them by pieces, in the first and fourth quadrants, and in the
Re(l) < 0 half-plane.

(1) Scattering states: Re(l) > 0.

(a) First quadrant: Im(l) � 0. The fundamental solutions can be written as

Sl(x, l) =
⎧⎨⎩

eikx + R(k) e−ikx x � −a

A(q) eiqx + B(q) e−iqx |x| � a

T (k) eikx x � a

(32)

Sr(x, l) =
⎧⎨⎩

T (k) e−ikx x � −a

A(q) e−iqx + B(q) eiqx |x| � a

R(k) eikx + e−ikx x � a.

(33)

Clearly, Sr,l is integrable at x = ±∞ respectively. We show that the fundamental
solutions in the other quadrants can be obtained from the above expressions by using
reflection and complex conjugation, that is, discrete symmetries of the Schrödinger
equation.
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(b) Fourth quadrant: Im(l) � 0. We note that this region is the complex conjugated of
the above one in the complex l-plane. We therefore obtain the fundamental solutions
by taking complex conjugation in equations (32) and (33), namely

Sl(x, l) =
⎧⎨⎩

e−ikx + R(k) eikx x � −a

A(q) e−iqx + B(q) eiqx |x| � a

T (k) e−ikx x � a

(34)

and

Sr(x, l) =
⎧⎨⎩

T (k) eikx x � −a

A(q) eiqx + B(q) e−iqx |x| � a

R(k) e−ikx + eikx x � a.

(35)

(2) Bound states: Re(l) < 0. In this case we perform the transformation k −→ iK , with
K = √−2ml/h̄, in equations (32) and (33). In other words, for a real value of l < 0 we
make an analytical continuation of the variable k. The fundamental solutions read

Sl(x, l) =
⎧⎨⎩

e−Kx + R(iK) eKx x � −a

A(q) eiqx + B(q) e−iqx |x| � a

T (iK) e−Kx x � a

(36)

and

Sr(x, l) =
⎧⎨⎩

T (iK) eKx x � −a

A(q) e−iqx + B(q) eiqx |x| � a

R(iK) e−Kx + eKx x � a.

(37)

Now we use the matching conditions at x = ±a and we find all of the coefficients
appearing in (32)–(37). The reflection and transmission coefficients are given by

T (k) = e−2ika[
cos 2qa − i

2

(
k
q

+ q

k

)
sin 2qa

]
R(k) = i

2

(
q

k
− k

q

)
sin 2qa

e−2ika[
cos 2qa − i

2

(
k
q

+ q

k

)
sin 2qa

] .

(38)

We do not display the coefficients A(q) and B(q) explicitly because they are not relevant for
our analysis of completeness. For instance, we recall from section 2 that the characteristic
matrix depends only on the asymptotic behavior of the solutions Sl and Sr near ±∞. As a
consistency test, we note that the reflection and transmission coefficients fulfill the condition

|R(k)|2 + |T (k)|2 = 1, (39)

an identity which guarantees the conservation of the probability current.
We also observe that Sr(x, l) is the reflection of Sl(x, l) about x = 0, that is,

Sr(x, l) = Sl(−x, l). The Wronskian of Sr and Sl is given by W(Sr, Sl) = 2ikT (k) and,
if we compare the solutions from the first quadrant, which we will identify by a superscript
‘+’, with the one corresponding to the fourth quadrant, denoted by a ‘−’ superscript, we find
the relations

S+
l (x, l) = S−

l (x, l) (40)

and

S+
r (x, l) = S−

r (x, l), (41)

which we will use later.

10
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From now on we will use E instead of l to denote the (generalized) eigenvalue of
equation (29), in order to emphasize its physical meaning of the eigenvalue as energy, although
E continues being a complex number. Now we are prepared to use the techniques of the
previous section in order to obtain the completeness of our generalized eigenfunctions. In
this particular example, it is simpler to compute the spectral measure by using the Green’s
function, as explained in remark 4. We have

G(x, x ′;E) = 2m/h̄2

W(Sr, Sl)

{
Sr(x,E)Sl(x

′, E) x < x ′

Sr(x
′, E)Sl(x, E) x > x ′ (42)

and we choose our fundamental solutions to be

σ1(x, E) = S+
l (x, E) σ2(x, E) = S+

r (x, E). (43)

After a straightforward computation we find

T S+
l (x ′, Ē) − T R̄

T̄
S+

r (x ′, Ē) = T S−
l (x ′, E) − T R̄

T̄
S−

r (x ′, E), (44)

and we conclude that the following identities hold:

T S+
l (x ′, Ē) − T R̄

T̄
S+

r (x ′, Ē) = S+
r (x ′, E), (45)

− T̄ R

T
σ1(x, E) + T̄ σ2(x, E) = S−

l (x, E). (46)

From these identities we can compute the Green’s function using equation (42). We obtain

G(x, x ′;E) = m i

h̄2k

[
−σ1(x, E)σ1(x ′, Ē) +

R̄

T̄
σ1(x, E)σ2(x ′, Ē)

]
(47)

for Re(E) > 0, Im(E) > 0, x > x ′, and

G(x, x ′;E) = m i

h̄2k

[
−R

T
σ1(x, E)σ2(x ′, Ē) + σ2(x, E)σ2(x ′, Ē)

]
(48)

for Re(E) > 0, Im(E) < 0, x > x ′.
Now we recall remark 4. The Green’s function G′(x, x ′;E) is given by the expression

G(x, x ′;E) =
⎧⎨⎩

∑
ij θ−

ij (E)σi(x, E)σj (x ′, Ē) x < x ′∑
i,j θ+

ij (E)σi(x, E)σj (x ′, Ē) x > x ′.
(49)

Comparing equations (47) and (48) to equation (49), we get (Re(E) > 0)

θ+
i,j (E) =

(−m i/h̄2k m i/h̄2kR̄/T̄

0 0

)
Im(E) > 0

θ+
i,j (E) =

(
0 −m i/h̄2kR/T

0 m i/h̄2k

)
Im(E) < 0

(50)

and now we use that (see remark 4) the elements of the matrix measure ρij (E) are given by
the integral

ρij ([E1, E2]) = lim
δ→0

lim
ε→0+

1

2π i

∫ E2−δ

E1+δ

dE
[
θ+
ij (E − iε) − θ+

ij (E + iε)
]
. (51)

It follows from (50) that ρ21 = 0, while for ρ12 we have

ρ12([E1, E2]) = −1

2π i

m i

h̄2

∫ E2

E1

dE
1

k

(
R

T
+

R̄

T̄

)
= 0. (52)

11
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For the other matrix elements, we find

ρ11([E1, E2]) = 1

2π i

∫ E2

E1

[
−

(
− m i

h̄2 k

)]
dE = 1

2 π
(k2 − k1), (53)

ρ22([E1, E2]) = 1

2π i

∫ E2

E1

m i

h̄2k
dE = 1

2 π
(k2 − k1), (54)

where we have used that kj = (2mEj)
1/2/h̄, j = 1, 2.

On the other hand, for the second and third quadrants, that is for Re(E) < 0, we proceed
analogously by choosing fundamental solutions

σ1(x, E) = Sl(x, E) σ2(x, E) = Sr(x,E), (55)

where we have used the expressions given by (48). In this case we have the relations

Sl(x, Ē) = Sl(x, E)

Sr(x, Ē) = Sr(x,E).
(56)

Using the fundamental solutions appearing in (55) we find

G(x, x ′;E) = 2m

h̄2

(
1

−2KT

)
σ2(x, E)σ1(x ′, Ē) x < x ′, (57)

which leads us to the matrix (see equation (49))

θ−
ij (E) = −m

h̄2KT

(
0 0
1 0

)
Re(E) < 0. (58)

This means that the only non-trivial matrix element of the measure is given by

ρ21([E1, E2]) = lim
ρ→0

lim
ε→0+

1

2π i

∫ E2−δ

E1+δ

dE
[
θ−

21(E − iε) − θ−
21(E + iε)

]
. (59)

In order to compute this element, we divide the region Re(E) < 0 into two pieces. We
consider first Re(E) ∈ (−∞,−V0). In this region θ−

21(E) is analytic on E, and it follows that
ρ21 vanishes there.

If Re(E) ∈ (−V0, 0), the situation is different. We note that we can find the poles of the
transmission coefficient T (k) (see equation (38)) by making the transformation k = iK . They
are given by the condition

cot qa − tan qa = i(q/k + k/q), (60)

that is,

tan qa = −ik/q cot qa = ik/q. (61)

For Re(E) > 0 there is no solution to the above equations. For Re(E) < −V0 both k and q
are imaginary, in the limit Im(E) = 0, and therefore there is no solution. Nevertheless, in the
interval −V0 < E < 0, k is pure imaginary but q is real. In this case, equation (61) leads to

tan qa =
√

2m

h2
|E|/q cot qa = −

√
2m|E|

h2
/q, (62)

where we used that k = i
√

2m(E)

h2 . Equation (62) corresponds to the conditions for the
existence of bound states associated with the even and odd eigenstates of the well potential
(see for instance reference [22]).
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Figure 1. Integration contour corresponding to the integral of equation (63). The crosses circles
represent the poles of the transmission coefficient.

The foregoing analysis implies that we need to apply the residue theorem in order to
compute correctly ρ21 by means of equation (59). We consider the contour C(ε, δ) of
figure 1 and apply the residue theorem:∫

C(ε,δ)

[
θ−

21(E − iε) − θ−
21(E + iε)

] = 2π i
N∑

j=1

Res
{
θ−

21(z), zj

}
, (63)

in which we are assuming that θ−
21(z) has N poles zj , j = 1, . . . , N , given by the solutions to

equation (62), lying in [E2, E1] ⊆ [−V0, 0]. On the other hand,∫
C(ε,δ)

[
θ−

21(E − iε) − θ−
21(E + iε)

] =
∫

C1(ε,δ)∪C2(ε,δ)

[
θ−

21(E − iε) − θ−
21(E + iε)

]
+

∫
L1∪L2

[
θ−

21(E − iε) − θ−
21(E + iε)

]
, (64)

where C1(ε, δ) and C2(ε, δ) denote the upper and lower parts of the curve C(ε, δ), and L1 and
L2 the lateral segments. Now, the integral over L1 ∪ L2 vanishes when δ and ε tend to zero,
and therefore we find

(2π i)ρ21([E1, E2]) = lim
δ→0

lim
ε→0+

∫
C1(ε,δ)∪C2(ε,δ)

[
θ−

21(E − iε) − θ−
21(E + iε)

]
dE (65)

= lim
δ→0

lim
ε→0+

∫
C(ε,δ)

[
θ−

21(E − iε) − θ−
21(E + iε)

]
dE, (66)

where equation (65) is simply the definition of ρ21. Therefore, we obtain

ρ21([E1, E2]) =
∑

j

Res
{
θ−

21, zj

}
, (67)

where the values for zj are given by equation (62). Now we can summarize the foregoing
analysis and conclude from the Weyl–Titchmarsh–Kodaira theorem that the following
asymptotic expansion is valid for u ∈ L2(−∞,∞).

Theorem 8. Let ρij be the spectral measure associated with the self-adjoint operator H, and
let σ1, σ2 be a pair of fundamental solutions for the eigenvalue problem (29). We set

ũj (E) =
∫ ∞

−∞
σj (y,E)u(y) dy, j = 1, 2.

Then,

u(x) = 1

π

∫ ∞

−∞
[σ1(x, E)̃u1(E) + σ2(x, E)̃u2(E)]χ(0,∞)(E) dE

+
N∑

j=1

Res
{
θ−

21, zj

}
σ2(zj )̃u1(zj ). (68)
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4. Concluding remarks

Completeness of eigenfunctions (for instance, of the energy) is a fundamental issue in Quantum
Mechanics not only because it is needed for the consistency of its theoretical construction but
also because it is of practical importance. In fact, completeness plays a crucial role in scattering
and perturbation theory [9, 16]. Nevertheless, it is a subtle concept when a quantum system
has discrete and continuum spectra simultaneously. In this paper, completeness is understood
within the framework of the general Weyl–Titchmarsh–Kodaira theorem on the eigenfunction
expansion for Sturm–Liouville operators [12, 20, 21]. We apply this theory to two one-
dimensional quantum mechanical problems, and we are able to explicitly obtain complete sets
of generalized eigenfunctions (representing bound and scattered states). We also show how to
expand arbitrary L2(R) functions with respect to these sets of generalized eigenfunctions.
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